Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 79
1.
Nutr Diabetes ; 14(1): 23, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653987

BACKGROUND: The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS: Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS: The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION: NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Dynamins , Nicotinamide Mononucleotide , Oocytes , Reactive Oxygen Species , Animals , Mice , Female , Oocytes/drug effects , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Experimental/drug therapy , Reactive Oxygen Species/metabolism , Nicotinamide Mononucleotide/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Sirtuin 1/metabolism , Sirtuin 3/metabolism , In Vitro Oocyte Maturation Techniques/methods , Superoxide Dismutase-1 , DNA Damage/drug effects , Streptozocin , Oogenesis/drug effects
2.
Mol Oncol ; 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38456710

Chimeric antigen receptor (CAR-T) cell therapy is a newly developed immunotherapy strategy and has achieved satisfactory outcomes in the treatment of hematological malignancies. However, some adverse effects related to CAR-T cell therapy have to be resolved before it is widely used in clinics as a cancer treatment. Furthermore, the application of CAR-T cell therapy in the treatment of solid tumors has been hampered by numerous limitations. Therefore, it is essential to explore novel strategies to improve the therapeutic effect of CAR-T cell therapy. In this review, we summarized the recently developed strategies aimed at optimizing the generation of CAR-T cells and improving the anti-tumor efficiency of CAR-T cell therapy. Furthermore, the discovery of new targets for CAR-T cell therapy and the combined treatment strategies of CAR-T cell therapy with chemotherapy, radiotherapy, cancer vaccines and nanomaterials are highlighted.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167032, 2024 03.
Article En | MEDLINE | ID: mdl-38246227

It was well known that SPOP is highly mutated in various cancers especially the prostate cancer and SPOP mutation dramatically impaired its tumor suppressive function. However, the detailed role and underlying mechanisms of SPOP in regulating the growth of gastric cancer is not fully studied. Here, we found that Cullin3SPOP promoted the ubiquitination and degradation of TIAM1 protein in gastric cancer setting. Gastric cancer and prostate cancer derived SPOP mutation failed to suppress the proliferation, migration and invasion of gastric cancer cells partially due to the elevated level of TIAM1 protein. Notably, SPOP protein were negatively associated with TIAM1 protein in human gastric cancer tissue specimens. In conclusion, our results elucidate a molecular mechanism by which SPOP regulates the stability of TIAM1, and further demonstrate that SPOP inhibits the progression of gastric cancer by promoting the ubiquitination and degradation of TIAM1 protein.


Prostatic Neoplasms , Stomach Neoplasms , Male , Humans , Stomach Neoplasms/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prostatic Neoplasms/pathology , Ubiquitination
4.
Cell Prolif ; : e13581, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38095020

Epigenetic modifications play critical roles during somatic cell nuclear transfer (SCNT) embryo development. Whether RNA N6-methyladenosine (m6 A) affects the developmental competency of SCNT embryos remains unclear. Here, we showed that porcine bone marrow mesenchymal stem cells (pBMSCs) presented higher RNA m6 A levels than those of porcine embryonic fibroblasts (pEFs). SCNT embryos derived from pBMSCs had higher RNA m6 A levels, cleavage, and blastocyst rates than those from pEFs. Compared with pEFs, the promoter region of METTL14 presented a hypomethylation status in pBMSCs. Mechanistically, DNA methylation regulated METTL14 expression by affecting the accessibility of transcription factor SP1 binding, highlighting the role of the DNA methylation/SP1/METTL14 pathway in donor cells. Inhibiting the DNA methylation level in donor cells increased the RNA m6 A level and improved the development efficiency of SCNT embryos. Overexpression of METTL14 significantly increased the RNA m6 A level in donor cells and the development efficiency of SCNT embryos, whereas knockdown of METTL14 suggested the opposite result. Moreover, we revealed that RNA m6 A-regulated TOP2B mRNA stability, translation level, and DNA damage during SCNT embryo development. Collectively, our results highlight the crosstalk between RNA m6 A and DNA methylation, and the crucial role of RNA m6 A during nuclear reprogramming in SCNT embryo development.

6.
PLoS One ; 18(10): e0291640, 2023.
Article En | MEDLINE | ID: mdl-37796824

Oocyte senescence alters the shape and function, thereby weakening the fertilization potential. Nicotinamide mononucleotide (NMN) reverses age-related dysfunctions in various organs. Studies had shown long-term administration of NMN reduced the physiological decline associated in aged mice and reversed the aging of the ovaries. However, the protective effect of NMN on aged porcine oocytes is still unclear. In this study, we investigated the effects of NMN on aging porcine oocytes and subsequent embryonic development. We established a model of senescence of porcine oocytes after ovulation by extending the culture time in vitro. NMN supplementation significantly reduced reactive oxygen species (ROS) levels in senescence oocytes and increased the mRNA levels of antioxidant genes SOD1 and Cat. The mitochondrial membrane potential of aged oocytes treated with NMN was increased compared with that of untreated oocytes. In addition, the mRNA level of apoptosis-related gene Bax was significantly decreased in senescence oocytes treated with NMN, while the mRNA level of anti-apoptosis-related gene BCL-2 was significantly increased. Furthermore, NMN supplementation enhanced the subsequent development ability of senescent oocytes during in vitro aging. Compared with untreated senescent oocytes, the blastocyst formation rate and pluripotent genes of senescent oocytes treated with NMN were significantly increased. Taken together, these results suggest that NMN is beneficial for delaying the aging process in porcine oocytes.


In Vitro Oocyte Maturation Techniques , Nicotinamide Mononucleotide , Female , Swine , Animals , Mice , Nicotinamide Mononucleotide/pharmacology , In Vitro Oocyte Maturation Techniques/methods , Oocytes , Embryonic Development , Reactive Oxygen Species/pharmacology , RNA, Messenger/pharmacology
7.
Front Biosci (Landmark Ed) ; 28(8): 186, 2023 08 28.
Article En | MEDLINE | ID: mdl-37664913

BACKGROUND: The complex formed by disulfiram (DSF) and copper (Cu) is safe and effective for the prevention and treatment of triple-negative breast cancer (TNBC). Although previous studies have shown that DSF/Cu induces ferroptosis, the mechanism remains unclear. METHODS: The mitochondrial morphology of TNBC treated with DSF/Cu was observed by transmission microscopy, and intracellular levels of iron, lipid reactive oxygen species (ROS), malondialdehyde, and glutathione were evaluated to detect the presence of ferroptosis. Target genes for the DSF/Cu-activated ferroptosis signaling pathway were examined by transcriptome sequencing analysis. Expression of the target gene, HOMX1, was detected by qRT-PCR, immunofluorescence and western blot. RESULTS: The mitochondria of TNBC cells were significantly atrophied following treatment with DSF/Cu for 24 h. Addition of DSF/Cu supplement resulted in significant up-regulation of intracellular iron, lipid ROS and malondialdehyde levels, and significant down-regulation of glutathione levels, all of which are important markers of ferroptosis. Transcriptome analysis confirmed that DSF/Cu activated the ferroptosis signaling pathway and up-regulated several ferroptosis target genes associated with redox regulation, especially heme oxygenase-1 (HMOX-1). Inhibition of ferroptosis by addition of the ROS scavenger N-acetyl-L-cysteine (NAC) significantly increased the viability of DSF/Cu-treated TNBC cells. CONCLUSIONS: These results show that DSF/Cu increases lipid peroxidation and causes a sharp increase in HMOX1 activity, thereby inducing TNBC cell death through ferroptosis. DSF/Cu is a promising therapeutic drug for TNBC and could lead to ferroptosis-mediated therapeutic strategies for human cancer.


Ferroptosis , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Copper/pharmacology , Disulfiram/pharmacology , Ferroptosis/genetics , Reactive Oxygen Species , Cell Line , Glutathione , Lipids
8.
MedComm (2020) ; 4(4): e331, 2023 Aug.
Article En | MEDLINE | ID: mdl-37547174

After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.

9.
Cell Death Dis ; 14(8): 504, 2023 08 05.
Article En | MEDLINE | ID: mdl-37543638

The transcription factor MYCN is frequently amplified and overexpressed in a variety of cancers including high-risk neuroblastoma (NB) and promotes tumor cell proliferation, survival, and migration. Therefore, MYCN is being pursued as an attractive therapeutic target for selective inhibition of its upstream regulators because MYCN is considered a "undruggable" target. Thus, it is important to explore the upstream regulators for the transcription and post-translational modification of MYCN. Here, we report that BRCA1-associated protein-1 (BAP1) promotes deubiquitination and subsequent stabilization of MYCN by directly binding to MYCN protein. Furthermore, BAP1 knockdown inhibits NB tumor cells growth and migration in vitro and in vivo, which can be rescued partially by ectopic expression of MYCN. Importantly, depletion of BAP1 confers cellular resistance to bromodomain and extraterminal (BET) protein inhibitor JQ1 and Aurora A kinase inhibitor Alisertib. Furthermore, IHC results of NB tissue array confirmed the positive correlation between BAP1 and MYCN protein. Altogether, our work not only uncovers an oncogenic function of BAP1 by stabilizing MYCN, but also reveals a critical mechanism for the post-translational regulation of MYCN in NB. Our findings further indicate that BAP1 could be a potential therapeutic target for MYCN-amplified neuroblastoma.


Neuroblastoma , Humans , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Cell Line, Tumor , Neuroblastoma/pathology , Cell Proliferation/genetics , Cell Transformation, Neoplastic , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
10.
Biomed Pharmacother ; 165: 115256, 2023 Sep.
Article En | MEDLINE | ID: mdl-37536038

Preclinical trials play critical roles in assessing the safety and efficiency of novel therapeutic strategies for human diseases including live cancer. However, most therapeutic strategies that were proved to be effective in preclinical cancer models failed in human clinical trials due to the lack of appropriate disease animal models. Therefore, it is of importance and urgent to develop a precise animal model for preclinical cancer research. Liver cancer is one of the most frequently diagnosed cancers with low 5-year survival rate. Recently, porcine attracted increasing attentions as animal model in biomedical research. Porcine liver cancer model may provide a promising platform for biomedical research due to their similarities to human being in body size, anatomical characteristics, physiology and pathophysiology. In this review, we comprehensively summarized and discussed the advantages and disadvantages, rationale, current status and progress of pig models for liver cancer research.


Biomedical Research , Liver Neoplasms , Swine , Animals , Humans , Disease Models, Animal
11.
Front Immunol ; 14: 1227797, 2023.
Article En | MEDLINE | ID: mdl-37465684

Currently, anti-PD-1/PD-L1 immunotherapy using immune checkpoint inhibitors is widely used in the treatment of multiple cancer types including lung cancer, which is a leading cause of cancer death in the world. However, only a limited proportion of lung cancer patients will benefit from anti-PD-1/PD-L1 therapy. Therefore, it is of importance to predict the response to immunotherapy for the precision treatment of patients. Although the expression of PD-L1 and tumor mutation burden (TMB) are commonly used to predict the clinical response of anti-PD-1/PD-L1 therapy, other factors such as tumor-specific genes, dMMR/MSI, and gut microbiome are also promising predictors for immunotherapy in lung cancer. Furthermore, invasive peripheral blood biomarkers including blood DNA-related biomarkers (e.g., ctDNA and bTMB), blood cell-related biomarkers (e.g., immune cells and TCR), and other blood-related biomarkers (e.g., soluble PD-L1 and cytokines) were utilized to predict the immunotherapeutic response. In this review, the current achievements of anti-PD-1/PD-L1 therapy and the potential biomarkers for the prediction of anti-PD-1/PD-L1 immunotherapy in lung cancer treatment were summarized and discussed.


B7-H1 Antigen , Lung Neoplasms , Humans , B7-H1 Antigen/metabolism , Mutation , Lung Neoplasms/drug therapy , Biomarkers, Tumor/genetics , Immunotherapy
12.
Theriogenology ; 206: 106-113, 2023 Aug.
Article En | MEDLINE | ID: mdl-37207564

Round spermatid injection (ROSI), one of the assistant reproductive technologies, was used to treat partial infertility patients suffering from non-obstructive azoospermia. However, the development efficiency and birth rate of ROSI embryos are extremely low, and it is urgent to investigate the underlying mechanisms of low efficiency to improve the clinical application of ROSI technology. Here, we analyzed and compared the genome stability of the mouse blastocyst and the post-implantation development between ROSI and ICSI embryos. We first sequenced the genome of blastocysts from mouse ROSI embryos that can correctly form male and female pronuclei (2 PN) and found that the genomes of 7 blastocysts were normal. Furthermore, the implantation rate of ROSI 2 PN embryos on embryonic day 7.5 is similar to that of ICSI embryos, and at this time, 37.50% (9/24) of deciduas have no normal gestational sac. The proportion of embryos that survived to embryonic day 11.5 in the ROSI 2 PN group, ROSI non-2 PN group, parthenogenesis group, and ICSI 2 PN group was 51.61%, 7.14%, 0.00%, and 55.00%, respectively. And two smaller fetuses were found in the ROSI 2 PN group, which is not found in the other three groups. In addition, the physiological indexes, including fetus and placenta weight, sex ratio, growth rate, and the natural breeding ability for the offspring obtained from mouse ROSI, were evaluated; ROSI mice exhibited no obvious defect or abnormality and implied that the progeny were safe. Our results provided new evidence to promote the clinical application of ROSI technology.


Oocytes , Spermatids , Male , Female , Pregnancy , Animals , Mice , Oocytes/physiology , Sperm Injections, Intracytoplasmic/veterinary , Embryonic Development , Parthenogenesis , Blastocyst/physiology
13.
Front Immunol ; 14: 1125224, 2023.
Article En | MEDLINE | ID: mdl-37006236

Cullin-RING ligases (CRLs) are the largest class of E3 ubiquitin ligases regulating the stability and subsequent activity of a large number of important proteins responsible for the development and progression of various diseases, including autoimmune diseases (AIDs). However, the detailed mechanisms of the pathogenesis of AIDs are complicated and involve multiple signaling pathways. An in-depth understanding of the underlying regulatory mechanisms of the initiation and progression of AIDs will aid in the development of effective therapeutic strategies. CRLs play critical roles in regulating AIDs, partially by affecting the key inflammation-associated pathways such as NF-κB, JAK/STAT, and TGF-ß. In this review, we summarize and discuss the potential roles of CRLs in the inflammatory signaling pathways and pathogenesis of AIDs. Furthermore, advances in the development of novel therapeutic strategies for AIDs through targeting CRLs are also highlighted.


Autoimmune Diseases , Cullin Proteins , Humans , Ubiquitination , Cullin Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Signal Transduction
14.
Front Immunol ; 14: 1137107, 2023.
Article En | MEDLINE | ID: mdl-36926345

Cancer immunotherapies, including immune checkpoint inhibition (ICI) and adoptive immune cells therapy, are promising therapeutic strategies. They reactivate the function of immune cells and induce immune responses to attack tumor cells. Although these novel therapies benefited a large amount of cancer patients, many cancer patients have shown fair responses even resistance to cancer immunotherapies, limiting their wide clinical application. Therefore, it is urgent to explore the underlying mechanisms of low response and resistance of cancer immunotherapy to enhance their treatment efficacy. The programmed cell death (PCD) including the ferroptosis, has been demonstrated to play essential roles in antitumor immunity and in regulating the immune response to ICIs. Ferroptosis, a phospholipid peroxidation-mediated, iron-dependent membrane damage, exhibite three critical hallmarks: the oxidation of phospholipids, the lack of lipid peroxide repair capability and the overloading of redox-active iron. Notably, ferroptosis was found to plays important roles in regulating tumor immunity and response to immunotherapy. Therefore, targeting ferroptosis alone or in combination with immunotherapy may provide novel options to promote their antitumor efficacy. However, the effect of ferroptosis on tumor immunity and immunotherapy is affected by the interaction of ferroptosis and cancer cells, immune cells, tumor microenvironment (TME) and others. In this review, we summarized and discussed the critical roles of ferroptosis in regulating antitumor immunity, TME and in the improvement of the therapeutic efficacy of immunotherapy in cancers.


Ferroptosis , Humans , Immunotherapy , Apoptosis , Cell- and Tissue-Based Therapy , Iron , Phospholipids
15.
Biomed Pharmacother ; 162: 114609, 2023 Jun.
Article En | MEDLINE | ID: mdl-37001182

Breast cancer (BC) is the most frequently occurring cancer type seriously threatening the lives of women worldwide. Clinically, the high frequency of diverse resistance to current therapeutic strategies advocates a demand to develop novel and effective approaches for the efficient treatment of BC. The chimeric antigen receptor T (CAR-T) cells therapy, one of the immunotherapies, has displayed powerful capacity to specifically kill and eliminate tumors. Due to the success of CAR-T therapy achieved in treating hematological malignancy, the effect of CAR-T cells therapy has been tested in various human diseases including breast cancer. This review summarized and discussed the landscape of the CAR-T therapy for breast cancer, including the advances, challenge and countermeasure of CAR-T therapy in research and clinical application. The roles of potential antigen targets, tumor microenvironment, immune escape in regulating CAR-T therapy, the combination of CAR-T therapy with other therapeutic strategies to further enhance therapeutic efficacy of CAR-T treatment were also highlighted. Therefore, our review provided a comprehensive understanding of CAR-T cell therapy in breast cancer which will awake huge interests for future in-depth investigation of CAR-T based therapy in cancer treatment.


Breast Neoplasms , Neoplasms , Receptors, Chimeric Antigen , Female , Humans , Breast Neoplasms/drug therapy , Receptors, Antigen, T-Cell , T-Lymphocytes , Immunotherapy, Adoptive , Neoplasms/drug therapy , Tumor Microenvironment
16.
Front Pharmacol ; 14: 1143102, 2023.
Article En | MEDLINE | ID: mdl-36909177

Breast cancer (BC) is the most frequently diagnosed malignant tumor among women in the world. BC is the heterogeneous tumor with different subtypes including luminal A-like, luminal B-like (HER2-/HER2+), HER2 enriched, and triple-negative BC. The therapeutic strategies including surgery, chemotherapy, radiotherapy, targeted therapy, and endocrine therapy are well developed and commonly used in the treatment of BC. However, some adverse effects of these conventional treatments limited their wide application in clinical. Therefore, it is necessary to develop more safe and more efficient individualized treatment strategies of the BC. Nanomedicine, as the most promising strategy for controlled and targeted drug delivery, is widely used in multiple aspects of cancer therapy. Importantly, accumulative evidences show that nanomedicine has achieved good outcomes in the treatment of BC and a huge amount of BC patients benefited from the nanomedicine related treatments. In this review, we summarized and discussed the major problems occurred during the administration of conventional treatment strategies for BC and the potential roles of nanomedicine in promoting the treatment efficacy of BC by overcoming obstacles of current treatment of BC.

17.
Front Immunol ; 14: 1104860, 2023.
Article En | MEDLINE | ID: mdl-36761724

The mutation of the crucial genes such as tumor suppressors or oncogenes plays an important role in the initiation and development of tumors. The non-synonymous mutations in the tumor cell genome will produce non-autologous proteins (neoantigen) to activate the immune system by activating CD4+ and CD8+ T cells. Neoantigen-based peptide vaccines have exhibited exciting therapeutic effects in treating various cancers alone or in combination with other therapeutic strategies. Furthermore, antigen-loaded DC vaccines are more powerful in inducing stronger immune responses than vaccines generated by antigens and adjuvants. Therefore, neoantigen-based dendritic cell (DC) vaccines could achieve promising effects in combating some malignant tumors. In this review, we summarized and discussed the recent research progresses of the neoantigen, neoantigen-based vaccines, and DC-based vaccine in pancreatic cancers (PCs). The combination of the neoantigen and DC-based vaccine in PC was also highlighted. Therefore, our work will provide more detailed evidence and novel opinions to promote the development of a personalized neoantigen-based DC vaccine for PC.


Antigens, Neoplasm , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , CD8-Positive T-Lymphocytes , Dendritic Cells , Pancreatic Neoplasms
18.
Front Pharmacol ; 13: 1065029, 2022.
Article En | MEDLINE | ID: mdl-36386145

The dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome is a severe immune disorder and characterized by serum IgE levels elevation, fungal and viral infections, dermatitis and food allergies. It was well known that DOCK8 is crucial for the survival and function of multiple immune related cells. However, the critical role of DOCK8 on tumorigenesis through regulating immunity is poorly investigated. Accumulating evidences indicated that DOCK8 could affect tumorigenesis by regulating the immunity through immune cells, including NK cells, T cells, B cells and dendritic cells. Here, we summarized and discussed the critical role of DOCK8 in cytoskeleton reconstruction, CD4+ T cell differentiation, immune synaptic formation, tumor immune infiltration, tumor immune surveillance and tumorigenesis. Furthermore, the potential roles of nanotechnology in improving the hematopoietic stem cell transplantation-based therapy for DOCK8 deficiency diseases are also highlighted and discussed.

19.
Front Cell Dev Biol ; 10: 1021820, 2022.
Article En | MEDLINE | ID: mdl-36187481

Bromodomain and extra-terminal domain (BET) family proteins play important roles in regulating the expression of multiple proto-oncogenes by recognizing acetylation of histones and non-histone proteins including transcription factors, which subsequently promote tumor cell proliferation, survival, metastasis and immune escape. Therefore, BET family proteins are considered attractive therapeutic targets in various cancers. Currently, blocking of the BET proteins is a widely used therapeutic strategy for MYCN amplified high-risk neuroblastoma. Here, we summarized and reviewed the recent research progresses for the critical function of BET proteins, as an epigenetic reader, on tumorigenesis and the therapeutic potential of the BET/BRD4 inhibitors on MYCN amplified neuroblastoma. We also discussed the combined therapeutic strategies for BET inhibitor-resistant neuroblastoma.

20.
Front Immunol ; 13: 971428, 2022.
Article En | MEDLINE | ID: mdl-35958549

The tumor microenvironment (TME) plays crucial roles in regulating tumor occurrence, progress, metastasis and drug resistance. However, it remains largely elusive how the components of TME are regulated to govern its functions in tumor biology. Here, we discussed how the two novel functional proteins, chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing 6 (CMTM6) and CMTM4, which involved in the post-translational regulation of PD-L1, modulate the TME functions. The roles of CMTM6 and CMTM4 in regulating TME components, including immune cells and tumor cells themselves were discussed in this review. The potential clinical applications of CMTM6 and CMTM4 as biomarkers to predict therapy efficacy and as new or combined immunotherapy targets are also highlighted. Finally, the current hot topics for the biological function of CMTM6/4 and several significant research directions for CMTM6/4 are also briefly summarized in the review.


B7-H1 Antigen , Neoplasms , B7-H1 Antigen/metabolism , Humans , MARVEL Domain-Containing Proteins/genetics , MARVEL Domain-Containing Proteins/metabolism , Myelin Proteins , Tumor Microenvironment
...